
Motivation.1)

Rational numbers form a field. Problem: some very well defined numbers, such as   
 

       are not 
rational. They can not be exactly represented as    , but surely can be approximated by rational 

numbers with arbitrary precision. We can write their decimal expansion with arbitrary precision. So, this 
will be a motivation for our definition.
Remark: we could have used expansion in any base, but we are all more familiar with decimals.
Definition.   is the set of all infinite sequences                    
                such that            9          , facthored by the following equivalence 
relation: the sequence                                               9 9           
The first n digits of the decimal representation of x guarantee that

2)

                                              

Definition.  is           , where the only two equivalent elements are
           and             
Remark. This definition differs from the book!
Graphic representation on the line also helps.
Let us understand the equivalency.
           999 
    9         9         by the familiar formula for te sum of infinite geometric series. 
We are not using an undefined notion here, this is just an explanation.
Rational numbers do not necessarily have representation ending with zeroes. 
Examples:
 

          

 
6     66666 

 
               9999 

  
 

   4 4   56  7  95 488  688  -- no law whatsoever!
Observation: there is a natural lexicographic order on    Note that the order is reversed for the 
negative numbers!
Easy to identify integers in   Also easy to define multiplication by    : it is just a shift by  digits to 
the right and using the decimal expansion of the integers.

Real numbers
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Theorem.
   iff             for    - the decimal expansion is eventually periodic. 
Proof.
First, assume x has eventually periodic expansion. Then 

               has all zero decimal digits after period, so it is an integer. Which means 

  
 

         
is a rational number.

On the other hand, let    
  . Two of the numbers               are the same      , because   

contain only q elements. So, say,                   or                     
This means that

  
 

   
  

    
  

                
  

        

Now divide    by       to obtain that for some integers        and  
      

 
 

          

If we write the decimal expansion of          with exactly  digits, possibly putting    in front, 
we obtain the desired decimal expansion, by the equation above.
Note: we did not use the formula for the sum of the geometric series!
□
Using the order relation, we can define addition, multiplication, division, and check, that   is a field. 
Long and boring, so we will skip it.
More interesting:

Absolute value:                
     
      

 

It can be used to define distance between two numbers:       
Archimedian property: let        , then            .
Proof.

 has a nonzero decimal digit, so        for some     So we can take
            
□

Real numbers -- continued
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Definition. Let     be a sequence of real numbers. We say that the sequence converges to   
 ,
   
   

    

1)

iff                           
The same as all but finitely many fall into   neighborhood.
Yet another view: Let us consider the residual set               
Then                           
Remark: Real sequences can diverge to          iff 

                    
 

 
     

 

 
  

   
   

    ○

   
   

 
   0. Follows from the Archimedean property.○

   
   

    

    
   ○

   
   

       does not exist.○

Examples. How to prove the convergence from the definition? Play the "        ": given a 
number     find   No need to find the best N: anything would be sufficient.

2)

An important tool:3)
Squeezed sequence Theorem.
Let    

   
      

   
     and for some            whenever     

Then    
   

     

Proof.
Fix      Find two numbers   and     such that
                           
These numbers exist by the definition of the limit.
Take                 
Then for      we have                            
□

Example:    
   

    

       
   4)

Limit of a sequence.
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   is bounded above if                          is called an upper bound for   •
   is bounded below if                          is called a lower bound for   •
   is called bounded if it is bounded both above and below.•

Definition. 

Easy property. Subset of a set bounded (above, below) is bounded (above, below). Union and 
intersection of two bounded(above, below) sets is bounded(above, below). Any finite set is bounded.

Any converging sequence is bounded.
Lemma.

Proof.
A converging sequence is a union of a subset of          and a finite set of elements which does 
not belong there.
Monotonicity Lemma. 
Let    

   
        

   
      Assume that         for     Then     

Proof.

Let      Take   
   

 
    All but finitely many    fall into  -neighborhood of    so        

   

 
 Similarly, all but finitely many    fall into  -neighborhood of    so        

   

 
 So for all but 

finitely many  ,      - contradiction.

Let    
   

        
   

      Then 

1.     
   

           

2.    
   

         

3.    
   

        
 

 
if     

Theorem.

Proof - see the book.

   
   

          5

   5 
  1.

   
   

        
 

     
 

   
  2.

   
   

    
     

 
     

 
   

  3.

Examples.

Basic operations with limits.
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Reminder: upper and lower bounds. Sic: the inequalities are not strict. An upper/lower bound can 
belong to a set!
Observation:  is an upper bound for a set  iff    is a lower bound for a set               is 
bounded above iff    is bounded below.
Observation: upper bounds form a ray: if    , and  is an upper bound for  , then  is also an upper 
bound for   
Definition.
Let  be a bounded above set.   is called the least upper bound or supremum of        is an upper 
bound for    and for any other upper bound  of  we have     
Notation:        
Equivalently:        iff  is an upper bound for    and any    is not an upper bound for  .
Equivalently:        iff  is an upper bound for    and                .

Definition.
Let  be a bounded above set.   is called the greatest lower bound or infimum of        is a lower bound 
for    and for any other lower bound  of  we have     
Notation:        
Observation:                
Theorem (Least upper bound principle).
Every nonempty subset  of  that is bounded above has a supremum. Similarly,
every nonempty subset  of  that is bounded below has an infimum.
Proof.
As in the book, we give a proof for the infimum. The existence of the supremum follows from the 
observation above.
First let us observe that a limit of a sequence of lower bounds for   is again a lower bound -- we just 
need to check it for every     
Next, we can always find an integer lower bound for  , let us call it    Then  is a lower bound for the 
set     (We work with the set    since it consists of nonnegative numbers -   is its lower 
bound!).
Let  be some element of  with decimal expansion                . Notice that     is not a lower 
bound for   (Why do we have to add    
There are only finitely many integers between  and   +1. Pick the largest of these that is still a lower 
bound for  , and call it   . Notice that     is again not a lower bound for  
  
Next pick the greatest integer   such that               is a lower bound for
 . Since        works and        does not,   belongs to          9 . Notice that 
        is not a lower bound for    
Same way we construct the number L=          such that for each                    a lower 
bound for    but         is not.
Since          is a lower bound for    On the other hand, if     then             
    for some    so   is not lower bound for   
Thus        
 

Supremum and infimum
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Definition.
A sequence of real numbers     is called (strictly) increasing if                   
A sequence of real numbers     is called (strictly) decreasing if                   
A sequence which is either (strictly) increasing or (strictly) decreasing is called (strictly) monotone. 

Theorem. (Monotone convergence theorem).
Every bounded above increasing sequence converges to its supremum.
Every bounded bellow decreasing sequence converges to  its infimum.
Proof.
Enough to prove for increasing sequences. Let          Then 
                .
Since   is increasing, 
                . 
Remark.
The unbounded increasing (decreasing) sequences diverge to         The proof is the same as for 
Monotone Convergence Theorem.

                 Bounded decreasing sequence, hence converges to   1.

                          
  
 

   
  This sequence is unbounded!2.

Important!:     is a sequence of nonnegative numbers,         
 
   Then   either have a 

limit, or diverges to    
3.

Examples.

Lemma (Nested Intervals Lemma).
Suppose that                                 are nonempty closed intervals
such that        for each    . Then the intersection        is nonempty.
Proof.
    is an increasing sequence, and     is decreasing.  Let  be the limit of     , and  be the limit of 
      Then    , and                     
Remark.
It is important to consider closed intervals!
Corollary.
If          and             , then        consists of exactly one point.
Proof.
Assume that             Then                 so      

Monotone sequences
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Definition.
A sequence of real numbers      is called a Cauchy sequence if
        if        then           
Lemma. 
Every converging sequence is a Cauchy sequence.
Proof.
Fix     and let     . Then one can find   such that for            

   

Then when                                
Turns out that for  the opposite is also true. Not so for   

Completeness Theorem.
Every Cauchy sequence of real numbers have a limit.
Proof.
Let      be a Cauchy sequence. 
First, take   such that if        then            Since 
                                     
     is a bounded sequence.

Let                                
Note that        so both sequences are bounded.
Use the Monotone sequence Theorem to define                     
Remark. The construction works for any bounded sequence. 
Notation.  
                          

Moreover,                          

So for                   and           
 

 
 So         

Thus          So,                Thus          

Note that           and           
By Squeezed Sequences Theorem,       
Example (important).
Majorated convergence of series:      

   .

Theorem.
If          and    

 
 converges, so does    

 
  

Proof.
Follows from 2.8.C 

Cauchy sequences
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Lemma. 
If |      the series     

   converges, and

   

 

   

 
 

   

Proof.

   
      

   
 

 

   
  

Lemma.
If    

 
   converges, then      

Proof.

              

 

   

    

 

   

    

Observation (from the definition of the limit).
   

 
   exists if and only if                 

 
       

Restatement of Cauchy Theorem for series -- Cauchy Criterion.
   

 
   exists if and only if                  

 
       

Theorem.

 
 

  
 
     iff     

Special case: when      the harmonic series  
 

 

 
   diverges.

Proof.
Let      By comparison test, enough to prove that harmonic series diverges.
Note that for harmonic series

           
 

 
   

 

    
 

 

 
 

    

      

This implies convergence by Cauchy criterion.
On the other hand, if     

           
 

  
   

 

   
  

 

 
 
      

 

    

      

Since  
 

 
 
     

  , we get that       
 

 
 
      

   
 

 
 
      

   
       

   

So      is bounded. It means that      is also bounded. 
Root test for convergence.

Let       Define             
 

If    , the series    
 
    diverges.

If    , the series    
 
    converges.

Remark.
If     

         yet for    the series    
 
    converges, and for    the series 

   
 
    diverges.

Remark - a property of       .
                    is finite and              is infinite.
Proof of the root test.
Let    . Pick     so that      . Then for all but finitely many            ,  so   

converges by comparison test.
Let now      Pick     so that        Then                   ,
so       

Series
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so       

Ratio test for convergence.

Let       Define         
    

  
  L:=       

    

  
  

If    , the series    
 
    diverges.

If    , the series    
 
    converges.

Proof.
Homework 
Theorem (Leibniz Alternating Series).
Let      be a monotone decreasing sequence converging to zero. Then 
        

 
    converges.

Proof.
Note that                         and                         
Thus the sequence    is decreasing, and the sequence      is increasing. Moreover, 
               . Since                        
Both sequences              are bounded (by each other), so they both have limits, which are the 
same by the previous observation.
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Definition.
Let      be a real sequence.     is called a limit point of      if
                    is infinite.
Remark
Compare with the limit, where the set                 should contain all but finitely many points.

     has two limit points: {-1,1}1.
Any converging sequence has only one limit point, its limit.2.
  (viewed as a sequence) has no limit points3.

The sequence     
       
         

has only one limit point: 1.4.

Examples.

Definition.

Let    be an increasing sequence of natural numbers.     
  is called a subsequence  of sequence      

Easy to see by induction:     
Theorem.
  is a limit point of a sequence       iff            

 for some  subsequence of      

Proof.

If            
  then                            

      , which is infinite by the 

definition of the limit.
On the other hand, if  is a limit point of    , we can construct a subsequence     recursively, by 

selecting        , with     
    

 

 
  

Theorem. (Bolzano-Weierstrass)
Every bounded sequence has a converging subsequence.
Equivalently: every bounded sequence has a limit point.
Proof.

            (can be done because      is bounded)1.
        is either left or right half of            , so that                is infinite . This is done 
by induction.

2.

Let us choose intervals        recursively, so that 

Then        =           /2, so           
Moreover, the family          is nested. Thus
        

 
     .

Then                            
So                                 
So  is a limit point of     

Limit points and subsequences
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